This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Sunday, October 9, 2016

Mesosphere & Thermosphere

The mesosphere (/ˈmɛssfɪər/; from Greek mesos "middle" and sphaira "balls") is the layer of the Earth's atmosphere that is directly above the stratosphere and directly below the mesopause. In the mesosphere, temperature decreases as the altitude increases. The upper boundary of the mesosphere is the mesopause, which can be the coldest naturally occurring place on Earth with temperatures below 130 K (−226 °F; −143 °C). The exact upper and lower boundaries of the mesosphere vary with latitude and with season, but the lower boundary of the mesosphere is usually located at heights of about 50 kilometres (160,000 ft; 31 mi) above the Earth's surface and the mesopause is usually at heights near 100 kilometres (62 mi), except at middle and high latitudes in summer where it descends to heights of about 85 kilometres (53 mi).
The stratosphere, mesosphere and lowest part of the thermosphere are collectively referred to as the "middle atmosphere", which spans heights from approximately 10 kilometres (33,000 ft) to 100 kilometres (62 mi). The mesopause, at an altitude of 80–90 km (50–56 mi), separates the mesosphere from the thermosphere—the second-outermost layer of the Earth's atmosphere. This is also around the same altitude as the turbopause, below which different chemical species are well mixed due to turbulent eddies. Above this level the atmosphere becomes non-uniform; the scale heights of different chemical species differ by their molecular masses.
The thermosphere is the layer of the Earth's atmosphere directly above the mesosphere and directly below the exosphere. Within this layer of the atmosphere, ultraviolet 
radiation causes photoionization/photodissociation of molecules, creating ions in the ionosphere. Taking its name from the Greekθερμός (pronounced thermos) meaning heat, the thermosphere begins about 85 kilometres (53 mi) above the Earth. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass (see turbosphere). Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F). Radiation causes the atmosphere particles in this layer to become electrically charged (see ionosphere), enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at 500 to 1,000 kilometres (310 to 620 mi) above the Earth's surface, the atmosphere turns into space.
The highly diluted gas in this layer can reach 2,500 °C (4,530 °F) during the day. Even though the temperature is so high, one would not feel warm in the thermosphere, because it is so near vacuum that there is not enough contact with the few atoms of gas to transfer much heat. A normal thermometer might be significantly below 0 °C (32 °F), at least at night, because the energy lost by thermal radiation would exceed the energy acquired from the atmospheric gas by direct contact. In the anacoustic zone above 160 kilometres (99 mi), the density is so low that molecular interactions are too infrequent to permit the transmission of sound.
The dynamics of the thermosphere are dominated by atmospheric tides, which are driven by the very significant diurnal heating. Atmospheric waves dissipate above this level because of collisions between the neutral gas and the ionospheric plasma.
The International Space Station orbits the Earth within the middle of the thermosphere, between 330 and 435 kilometres (205 and 270 mi) (decaying by 2 km/month and raised by periodic reboosts), whereas the Gravity Field and Steady-State Ocean Circulation Explorer satellite at 260 kilometres (160 mi) utilized winglets and an innovative ion engine to maintain a stable orientation and orbit.


Stratosphere & Troposphere


The stratosphere (/ˈstrætəˌsfɪər-t-) is the second major layer of Earth's atmosphere, just above the troposphere, and below the mesosphere. About 20% of the atmosphere's mass is contained in the stratosphere. The stratosphere is stratified in temperature, with warmer layers higher and cooler layers closer to the Earth. The increase of temperature with altitude, is a result of the absorption of the Sun's ultraviolet radiation by ozone. This is in contrast to the troposphere, near the Earth's surface, where temperatures decreases with altitude. The border between the troposphere and stratosphere, the tropopause, marks where this temperature inversion begins. Near the equator, the stratosphere starts at 18 km (59,000 ft; 11 mi); at mid latitudes, it starts at 10–13 km (33,000–43,000 ft; 6.2–8.1 mi) and ends at 50 km (160,000 ft; 31 mi); at the poles, it starts at about 8 km (26,000 ft; 5.0 mi). Temperatures vary within the stratosphere with the seasons, in particular with the polar night (winter). The greatest variation of temperature, takes place over the poles in the lower stratosphere; those variations are largely steady at lower latitudes and higher altitudes.

The troposphere is the lowest portion of Earth's atmosphere, and is also where all weather takes place. It contains approximately 75% of the atmosphere's mass and 99% of it is water vapor and aerosols. The average depths of the troposphere are 20 km (12 mi) in the tropics, 17 km (11 mi) in the mid latitudes, and 7 km (4.3 mi) in the polar regions in winter. The lowest part of the troposphere, where friction with the Earth's surface influences air flow, is the planetary boundary layer. This layer is typically a few hundred meters to 2 km (1.2 mi) deep depending on the landform and time of day. Atop the troposphere is the tropopause, which is the border between the troposphere and stratosphere. The tropopause is an inversion layer, where the air temperature ceases to decrease with height and remains constant through its thickness.
The word troposphere derives from the Greek: tropos for "turn, turn toward, trope" and "-sphere" (as in, the Earth), reflecting the fact that rotational turbulent mixing plays an important role in the troposphere's structure and behaviour. Most of the phenomena we associate with day-to-day weather occur in the troposphere.